230 research outputs found

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Hemophagocytic Lymphohistiocytosis Associated with Anaplasmosis

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome characterized by unregulated macrophage and T-lymphocyte activation resulting in cytokine overproduction and subsequent histiocytic phagocytosis. Variant infections, particularly viruses have been postulated as the inciting factor for this potentially fatal disease. Herein, we will report a case of HLH associated with anaplasmosis

    Modeling the blanketing and warming effect of high expansion foam used for LNG vapor risk mitigation

    Get PDF
    PresentationNatural Gas is a cleaner energy when compared to other sources like oil or coal. Its consumption has been drastically increasing over the past few years and is projected to increase further. Liquefying natural gas is an effective way of easily storing and transporting it because of the high ratio of liquid to vapor densities. However, a leak of liquefied natural gas (LNG) can result in the formation of a huge vapor cloud, which poses a potential risk. This cryogenic vapor cloud has the potential to ignite and can migrate downwind near ground level because of a density greater than air. NFPA recommends the use of high expansion foam to mitigate the vapor hazard due to LNG. The primary objective of this paper is to study the effects of heat transfer mechanisms like convection and radiation on foam breakage to be able to accurately quantify the amount of foam required to mitigate the vapor risk of LNG spills

    MVFST-RL: An Asynchronous RL Framework for Congestion Control with Delayed Actions

    Get PDF
    Effective network congestion control strategies are key to keeping the Internet (or any large computer network) operational. Network congestion control has been dominated by hand-crafted heuristics for decades. Recently, ReinforcementLearning (RL) has emerged as an alternative to automatically optimize such control strategies. Research so far has primarily considered RL interfaces which block the sender while an agent considers its next action. This is largely an artifact of building on top of frameworks designed for RL in games (e.g. OpenAI Gym). However, this does not translate to real-world networking environments, where a network sender waiting on a policy without sending data leads to under-utilization of bandwidth. We instead propose to formulate congestion control with an asynchronous RL agent that handles delayed actions. We present MVFST-RL, a scalable framework for congestion control in the QUIC transport protocol that leverages state-of-the-art in asynchronous RL training with off-policy correction. We analyze modeling improvements to mitigate the deviation from Markovian dynamics, and evaluate our method on emulated networks from the Pantheon benchmark platform. The source code is publicly available at https://github.com/facebookresearch/mvfst-rl

    Performance of a deep learning algorithm for the evaluation of CAD-RADS classification with CCTA

    Get PDF
    Background and aims: Artificial intelligence (AI) is increasing its role in diagnosis of patients with suspicious coronary artery disease. The aim of this manuscript is to develop a deep convolutional neural network (CNN) to classify coronary computed tomography angiography (CCTA) in the correct Coronary Artery Disease Reporting and Data System (CAD-RADS) category. Methods: Two hundred eighty eight patients who underwent clinically indicated CCTA were included in this single-center retrospective study. The CCTAs were stratified by CAD-RADS scores by expert readers and considered as reference standard. A deep CNN was designed and tested on the CCTA dataset and compared to on-site reading. The deep CNN analyzed the diagnostic accuracy of the following three Models based on CAD-RADS classification: Model A (CAD-RADS 0 vs CAD-RADS 1–2 vs CAD-RADS 3,4,5), Model 1 (CAD-RADS 0 vs CAD-RADS>0), Model 2 (CAD-RADS 0–2 vs CAD-RADS 3–5). Time of analysis for both physicians and CNN were recorded. Results: Model A showed a sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 47%, 74%, 77%, 46% and 60%, respectively. Model 1 showed a sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 66%, 91%, 92%, 63%, 86%, respectively. Conversely, Model 2 demonstrated the following sensitivity, specificity, negative predictive value, positive predictive value and accuracy: 82%, 58%, 74%, 69%, 71%, respectively. Time of analysis was significantly lower using CNN as compared to on-site reading (530.5 ± 179.1 vs 104.3 ± 1.4 sec, p=0.01) Conclusions: Deep CNN yielded accurate automated classification of patients with CAD-RADS
    • …
    corecore